Concordance indices for comparing fuzzy, possibilistic, rough and grey partitions

نویسندگان

  • Michele Ceccarelli
  • Antonio Maratea
چکیده

Many indices have been proposed in literature for the comparison of two crisp data partitions, as resulting from two different classifications attempts, two different clustering solutions or the comparison of a predicted vs. a true labelling. Crisp partitions however cannot model ambiguity, vagueness or uncertainty in class definition and thus are not suitable to model all cases where information lacks, terms definitions are intrinsically imprecise or the classification results from a human expert knowledge representation. In presence of vagueness, it is not obvious how to quantify overlap or agreement of two different partitions of the same data and many facets of vagueness have emerged in literature through complimentary theories. The aim of the paper is to give simple numerical indices to quantify partitions agreement in the fuzzy, possibilistic, rough and grey frameworks. We propose a method based on pseudo counts, intuitive in the meaning and simple to implement that is very general and allows comparing fuzzy, possibilistic, rough and grey partitions, even with a different number of classes. The proposed method has just one free parameter used to model sensitivity to higher values of membership.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing Fuzzy, Probabilistic, and Possibilistic Partitions Using the Earth Mover's Distance

A number of noteworthy techniques have been put forth recently in different research fields for comparing clusterings. Herein, we introduce a new method for comparing soft (fuzzy, probabilistic and possibilistic) partitions based on the earth mover’s distance (EMD) and the ordered weighted average (OWA). The proposed method is a metric, depending on the ground distance, for all but possibilisti...

متن کامل

Rough Set Based Generalized Fuzzy C-Means Algorithm and Quantitative Indices

A generalized hybrid unsupervised learning algorithm, which is termed as rough-fuzzy possibilistic c-means (RFPCM), is proposed in this paper. It comprises a judicious integration of the principles of rough and fuzzy sets. While the concept of lower and upper approximations of rough sets deals with uncertainty, vagueness, and incompleteness in class definition, the membership function of fuzzy ...

متن کامل

Intra-cluster Similarity Index Based on Fuzzy Rough Sets for Fuzzy C-Means Algorithm

Cluster validity indices have been used to evaluate the quality of fuzzy partitions. In this paper, we propose a new index, which uses concepts of Fuzzy Rough sets to evaluate the average intra-cluster similarity of fuzzy clusters produced by the fuzzy c-means algorithm. Experimental results show that contrasted with several well-known cluster validity indices, the proposed index can yield more...

متن کامل

A Grey-Based Fuzzy ELECTRE Model for Project Selection

Project selection is considered as an important problem in project management. It is multi-criteria in nature and is based on various quantitative and qualitative factors. The main purpose of this paper is to present a new rank-based method for project selection in outranking relation. According to this approach, decision alternatives were clustered in the concordance matrix and the discordance...

متن کامل

Evidential Clustering: A Review

In evidential clustering, uncertainty about the assignment of objects to clusters is represented by Dempster-Shafer mass functions. The resulting clustering structure, called a credal partition, is shown to be more general than hard, fuzzy, possibilistic and rough partitions, which are recovered as special cases. Three algorithms to generate a credal partition are reviewed. Each of these algori...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJKESDP

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2009